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ON THE USE OF EULER'S THEOREM ON ROTATIONS FOR
THE SYNTHESIS OF ATTITUDE CONTROL SYSTEMS

By George Meyer
Ames Research Center

SUMMARY

The problem of controlling the rotational position (attitude) of a rigid
body in three dimensions is discussed. Several control laws are synthesized
for this six-dimensional nonlinear control problem by means of some well-known
techniques of classical mechanics.

The system input, output, and error are represented by 3X3 orthogonal
matrices. Euler's theorem on rotations is employed to express the error matrix
in terms of the angle of rotation and the direction cosines of the real eigen-
vector of the error matrix. It is noted that the angle of rotation is a con-
venient scalar representation of the system error. A class of control laws
for which the control torque is a function of the real eigenvector of the error
matrix and the angular velocity of the controlled body is synthesized. Condi-
tions are stated for which the system governed by such control laws is
asymptotically stable everywhere.

The results are illustrated with three examples: reaction jet control,
reaction wheel control, and reaction wheel control with bounded motor torgue
and speed.

INTRODUCTION

The need for an attitude control system arises frequently in aerospace
technology. The Orbiting Astronomical Observatory (see refs. 1 and 2) (0AQ)
provides a typical example. It consists of a telescope rigidly attached to an
Earth-orbiting satellite. The function of the attitude control system of the
satellite is to point the telescope in any direction specified by a terrestrial
astronomer. His commands may, for example, be step changes in attitude going
from one obJject in the sky to another, or continuous changes which correspond
to scanning a portion of the sky or to following a moving object.

The control problem for this satellite falls into two categories. First,
while examining a particular obJject, the satellite is required to hold attitude
to an extremely high degree of accuracy. This problem has been studied in sev-
eral works, such as references 1, 2, and 3. Second, to change from viewing one
part of the sky to another, large slewing angles are required. This problem is
congiderably more difficult from the analytical standpoint than the first one
because the describing equations are inherently nonlinear, and any lineariza-
tion of these equations would be likely to produce meaningless results. Since
nonlinear equations must be used, the problem is to find a descriptive means



which will allow the determination of the proper control for the slewing
motion. Euler angles are often used for the kinematic description of motion.
This produces equations that are not only nonlinear but involve complicated
combinations of trigonometric terms. The determination of the control in
terms of these variables is difficult, and no complete solution to the large
angle slew problem exists.

A solution to the slewing problem is proposed in the present report. The
solution is complete in the sense that the proposed control laws yield asymp-
totic stability for all attitudes and attitude changes, and both the kinematic
and the dynamic nonlinearities are taken into account. The solution is based
on the well-known fact that three-dimensional rotations may be represented by
3X3 orthogonsl matrices. Both the system input and the system output are
repregented by such matrices, and the system error is defined to be the 3X3
orthogonal direction cosine matrix corresponding to the rotation between the
actual and desired attitudes of the vehicle. This definition of system error
permits the theory of three-dimensional rotations to be applied to the atti-
tude control problem. In particular, Euler's theorem on rotation (see ref. 4)
is employed to define a quantitative representation of the system error as the
rotation angle of the error matrix. This angle and the magnitude of the angu-
lar velocity of the body are used to construct Liapunov functions by means of
which stability of the system 1s investigated. A class of control laws for
which the control torgue is a function of the real eigenvector of the error
matrix and the angular velocity of the controlled body is synthesized. For
small errors in attitude these control laws are like those obtained in the
Euler angle approach; in addition, they yield asymptotically stable systems
for all attitudes.

Several details needed in the main discussion are developed in the
appendixes. In particular, notation and special functions together with some
of their properties are summarized in appendix A. ©Some of the consequences of
Euler's theorem on rotation are discussed in appendix B. The dynamic equations
corresponding to the two methods of generating torque namely by means of
reaction Jets and reaction wheels are derived in the desired form in
appendix C and several aspects of optimal control are considered in appendix D.

LIST OF SYMBOLS

Agg linear transformation representing the actual attitude of vehicle
Ags matrix representing Kés with respect to the s Tbasis
A&s linear transformation representing the desired attitude of vehicle
Aqg matrix representing Kas with respect to the s Dbasis



g(AaS )Wa)

by

real unit eigencolumn of R corresponding to the
eigenvalue +1

nonlinear (gyroscopic) part of the dynamic equation
representation of the angular momentun h in the a Dbasis

representation of the angular momentum h in the s Ybasis

initial angular momentum of the system

maximum angular momentum capacity of a set of reaction wheels

the identity matrix

representation of the moment of inertia operator in the
a Dbasis

eigenvalues of Jg

maximum eigenvalue of Jg

error matrix defined by Ag-Agg

angular velocity of the a basis relative to the s Dbasis
angular velocity of the d ©basis relative to the s Dbasis
representation of the vector W, in the a basis
representation of the vector Wy in the 4 basis
representation of the control torque in the a Tbasis
spherical limit on the control torque

measure of mass asymmetry for the reaction jet control
measure of mass asymmetry for the reaction wheel control

inverse of the moment of inertia of a spherically symmetric
mass

error angle

point of saturation in the function sat(¢,$s)



Special Symbols

& time derivative of the column matrix y

Y time derivative of the matrix Y

[l (yty)l/g

yt transpose of the column y

Yt transpose of the matrix Y

Y_l inverse of the matrix Y

tr(Y) trace of the matrix Y (see eq. (Al))

a(Y) column function of the matrix Y (see eq. (A2))

s(y) matrix function of the colum vy (see eq. (A3))

sat(@,¢s) saturation function = ¢/¢s for 0<9o <@g and 1 for O > Qg

argmex f(x) that value of x in X which maximizes f(x)
xeX

argmin £(x) that value of x in X which minimizes f(x)
xeX

Vi gradient with respect to (x1,X2,Xs)

ANALYSIS OF VEHICLE MOTION

The attitude of a rigld body relative to external space can be completely
specified by locating a Cartesian set of coordinates fixed in the rigid body
(see ref. 4). The orientation of the body set of coordinates relative to any
other set with common origin may be described by a matrix of direction cosines.
This matrix will be defined as the output of an attitude control system.

Consider two right-hand orthonormal triplets of vectors with the common
origin 0: s =(Ug;,UgpsUgg) 8nd & = (Ugq,Ug,,Ugs), respectively. Let the
triplet a be fixed in the body, and let the triplet s be fixed in inertial
space. Then, the attitude of the body relative to s will be defined by a
transformation which maps s into a. Let such a transformation be denoted by

Kas, SO that
Tgi = Aaslsi » 1 =1,2,3 (1)

Let K@s be represented with respect to the s basis by the 3X3 matrix Agg.
Since Agg is a matrix of direction cosines (i.e., aij = Ugi °* Tgj) it is



orthogonal. Thus,

Ag AL, =T (2)
where Ags is the transpose of Agg and I is the identity matrix. ZEqua-
tion (2) indicates that the output of an attitude control system may be
represented by an orthogonal matrix; this fact is of primary importance in the
present note. The properties of three-dimensional rotation matrices, listed
in appendix B, are used in the following development.

Suppose that the triplet a is rotating relative to the triplet s. Then
Agg 1s a function of time, say Agg(t). Hence, according to equation (2)
AG()AL (t) = I for all t, and

Aoab woa AP = A ab 4 (A Al )t

agfas asfas as‘as ashag) = O

M t
where the dot indicates time differentiation. Consequently, A  A_ . must

always be a skew-symmetric matrix, say S. From the definition of angular
velocity it follows (see appendix B) that if the column matrix W, Trepresents
(with respect to the a triplet) the angular velocity vector W of the a

a
triplet relative to the s +triplet, then (see ref. 5)

as “VYao
S = 8(wy) = “Way O Va1 (3)
Wao Wy O

Thus, the rotation matrix Agg and the column matrix w, which define the
attitude and the angular velocity of the controlled rigid body, respectively,

are connected by the matrix differential equation

Aae = 8(w)Ay, » Ay (0)AZ (0) = T ()

Equation (4) will be referred to as the matrix form of the kinematic equation.
It applies to all attitude control problems.

Unlike the kinematic equation, the dynamic equation depends on the partic-
ular method of generating control torque. In the present report, two methods
will be discussed. The first is one in which the control torque is external
(i.e., control by means of a set of reaction jets). The second is one in
which the total angular momentum of the system is conserved, and the control
torque is generated internally by a momentum exchange device (i.e., a set of
reaction wheels).

The dynamic equations corresponding to these two schemes are derived in
appendix C. Both equations are of the following form:



Wy = Jalza + g(AggsWy) (5)
where J, 1s a constant matrix, measuring moment of inertia; 2z, is the column
matrix representing the control torque vector with respect to the body axes
(the a triplet) and g is a column matrix (representing the gyroscopic
acceleration) which is a nonlinear function of the attitude and angular
velocity of the controlled rigid body.

When the control torgue is external,
& = Ja 8(va) Tg¥y (6a)

5 18 the matrix which represents with respect to the body axes the
moment of inertia operator of the rigid body being controlled.

where J,

When the control is internal, through a set of reaction wheels, and the
total system angular momentum is conserved,

& = Jéls(wa)Aashs(o) (6Db)

where Jg represents, relative to the body axes, the inactive moment of
inertia (i.e., the inertia of the rigid body plus locked wheels minus the
inertias of the wheels about their spin axes). The column matrix hg(0)
represents, with respect to inertial space, the total angular momentum of the
system. It is constant when extermal torques are absent.

The kinematic equation together with the appropriate dynamic equation
describes the controlled object from the point at which the control torque is
generated to the output attitude. In order to employ feedback control, the
attitude A,y of the controlled body must be known. The function of an
attitude sensor is to measure Agg.

It will be assumed henceforth that the independent controlling variable
is the control torque zg and that A,y 1is measurable directly; that is,
any dynamic elements between the applied voltage and the control torque, and
between the sensor variables and the corresponding output voltage will be
neglected in the sequel. The equations of the plant are then the following:

Agg = 8(vg)hgg (Ta)

. -1

_ Consider, next, the way in which the system error may be defined. Let
Ads(t) be a transformation given as a function of time which defines the
desired attitude of the controlled body (i.e., the input) relative to the

s triple (inertial space). The matrix Agg(t) will represent Agg(t) with
respect to s. The attitude control problem consists in specifying a control



law which will force the attitude Age of the controlled body to approximate
Ads(t) in some sense as nearly as possible consistent with the existing
constraints.

When Aag # Ags(t) an error exists, and the question arises as to how to
specify it. An obvious choice is to define the error by the matrix
E = Agg - Agg with the desired condition given as E = O. This choice will
not be made because the significant property of orthogonality would be lost:
E 1is not orthogonal. A more advantageous choice for a definition of the error
is to define it by the orthogonal matrix

R = AaSAgs(t) (8)

with the desired condition given by R = I. The matrices Agq, Agg, and R
willl be referred to as the input, output, and error matrices of the system,
respectively.

The preceding discussion is summarized in the form of the block diagram
of figure 1.

Wo

e A; Mat R Control z Dynamic
pnetion " N rlx —> ontro Torquer - equation
generator multipty low (7b)

4

Ags

Kinematic
3
equation 1—‘

(7a)

inertial
<
sensot

as

44— Controller

Plant >

Figure 1.- The block diagram of an attitude control system.

THE SYNTHESIS OF CONTROL LAWS

Let the error matrix R be defined by equation (8). According to Euler's
theorem on rotations (see ref. 4), the matrix R may be considered at every
instant of time to represent a single rotation. The angle ¢ of this rotation
is given by the following equation (see appendix B).

¢ = cos™1 {% [tr(R) - l]}- R 0<¢p < (9)



Clearly, ® = O if and only if R = I; otherwise, ¢ > 0. It is, there-
fore, natural to consider ¢ as a Quantitative representation of the attitude
error. Indeed, a gufficient condition for driving R to I is to maintain the
time rate of change of ¢ negative.

The time derivative of equation (8) is

R = S(w,)R - RS(wg) (10)

where S(wg) depends only on the input. Nemely, S(wg) = AdsAgs‘ According to
the property (All) of appendix A, RS(wy) = S(Rwg)R; hence,

R = 8(w, - Rwg)R (11)

Egquation (11) will be referred to as the kinematic equation of the system
error. The column matrix wg - Rwg represents the error velocity vector
W = Wg - Wg with respect to the body axes.

Let ¢ denote the real unit eigenvector of R. The existence of ¢ 1is
guaranteed by Euler's theorem. According to equation (BT7a) of appendix B,
which is true for any rotation matrix,

. t
® = c’(wy - Rwg)

But ctR = ct; hence,

o = ct(wa - W) (12)

Equation (12) implies that any control which maintains the projection of
W on c¢ less than the projection of Wq on ¢ throughout the control
interval will force the vehicle into the desired attitude.

Kinematic Control

Generally speaking, when the vehicle is controlled by means of an angular
momentum exchange device (i.e., reaction wheels or control moment gyros) the
angular momentum capacity of the device is small, while the torque levels of
the motors, which cause the exchange, are high. Consequently, when ¢ is far
from O, the time required to perform the exchange is sufficiently short, rela-
tive to changes in ¢, to be practically instantaneous. That is, when ¢ is
far from O, it may be possible to approximate the attitude control system by
a purely kinematic model. In that case the independent controlling variable
becomes the angular velocity of the controlled body, and a possible control law

is the following:

Wy = argmin wgc (13)
waewa

where W is the set of vehicle angular velocities which are consistent with
the capacity of the momentum exchange device.

8



Small Error Control

In the neighborhood of the point ¢ = 0, the kinematic model becomes
inadequate becauge of integration lag. However, in this case the behavior of
the system may be investigated by means of the following equation, which is
equivalent to equation (10) to first-order terms in ¢ (see appendix B)

a(R) = S(wq)a(R) - wy + W, (1k)

where q(R) 1is a scaled real eigenvector of R, namely, q(R) = sin @ c. It is
given explicitly as a continuous function of the elements of the matrix R in
appendix A by equation (A2).

For example, suppose that the vehicle is controlled by means of a set of
reaction wheels, that the total angular momentum of the system is zero, and
that the reference attitude is constant. Then equation (14) together with the
dynamic equations (7b) and (6) with hg(o) = O implies that

G(R) - Iz, = O (15)

In particular, let the control law be the following, where A and B are
constant matrices.

zg = -Ad(R) - Ba(R) (16)

Then the behavior of the system near R = I 1is specified by the following
differential equation

4(R) + J."B4(R) + J;*Aq(R) = 0 (17)

It may be noted that the above linear differential equation with constant
coefficients is independent of the nominal attitude defined by Agg. On the
other hand, in the conventional approach (see ref. 3) based on Euler angles

the coefficients of the perturbation equation are functions of the REuler angles
of Agge. This means that stability (for example) must be investigated for
every expected nominal attitude. Such is not the case if equation (17) is used.

Restricted Dynamic Control

Next, suppose that neither a kinematic model nor a perturbation model
describes the system adequately. Suppose that the vehicle is described by
equation (7), and that it is desired to rotate it from one attitude to another
attitude with zero initial and final velocities. A possible scheme for achiev-
ing this maneuver is to rotate the vehicle about the eigenvector of the error
matrix R until the desired attitude is reached. The equations of motion
corresponding to such a control scheme may be derived as follows.

According to (12) when wg = O,

5 = obu, (18)



Since the control rotates the vehicle gbout the eigenvector ¢ of R, the
acceleration W as well as the velocity wg must be parallel to c. That
is, the acceleration must be of the following form where f is a scalar.

W, = -fc (19)

Consequently, the error angle ¢ satisfies the following differential equation:
P+ =0 (20)

If f depends on the state (R,wa) in such a way that it may be expressed as a
function of @ and its derivatives only, then (20) is the equation of motion
of the system. Thus, if the dynamic equation of the system is given by (Tb)
and if the control law

Za = -f((p,(b)Jac - Jag(RAds)Wa) (21)

is selected, then the following equation of motion of the system results.
¢+ t(p,9) =0 (22)

It should be noted that the control just described is possible only when
the initial angular velocity of the vehicle is either zero or an eigenvector
of the initial error matrix. If there is velocity orthogonal to the eigen-
vector, then the direction of the eigenvector cannot be kept constant with
finite accelerations.

A case for which R(0)wy(0) # wy(0) may be treated as follows. (It is
still assumed that the input is an attitude step.) Select a control law which
applies torque so that the vehicle decelerates along wy(0) until time t3
when w, = O; then rotate the vehicle about the real eigenvector of the result-
ing R(t1) as discussed above. Such a control is simple to implement and may
be attractive in practice if the behavior of the resulting control system does
not differ much from that of a specified optimal system. For example, suppose
that a system having the dynamic equation,

ﬁé = az, (23)

where o 1is a constant scalar (i.e., eq. (5) with J, = I/a and g = 0) and
HzaH < Zpaxs is subjected to the following control law:

25 (0)/ W (O)||  wntil w, = O, followed by the
z, = { time-optimal control about the real eigenvector of (2k)
the resulting R.
The behavior of this control law with respect to time-optimality was Jjudged
by means of a digital computer simulgtion. The procedure was to drive the
system from the point (R = I, wg = 0) to an arbitrary point [R(topt), wa(topt)]
by means of the time-optimal control (see appendix D), and then apply the

10



suboptimal control (24) to bring the resulting point to [R(topt + tgyp) = Is
Wa(topt + tgup) = O], and compare the two times t,ny and tgyp. The results
are summarized in sketch (a). The data indicate that i1f a departure in the
response time by 65 percent is permitted, the simple suboptimal control is

adequate.
14
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Sketch (a).- The shaded region contains 1500 points corresponding to
1500 different initial conditions.

Dynamic Regulator - Asymptotic Stability

The last result to be included in the present report deals with the con-
ditions for which attitude control systems, governed by a class of control
laws, are asymptotically stable. It is assumed that the reference attitude
Ajg 1is constant for t > O, and that the independent controlling variable is
the torgque zge. The pertinent set of differential equations is the following
(see egs. (Tb) and (11) with wg = 0).

R = S(wg )R (25a)

1
Wy = Jg 25 + 8(RAggsWy) (25b)
Let the state space (see ref. 6) for the set (25) be chosen to be

X = [(R,w,)  such that RR° - I = 0]

Suppose that a control law zg = f(R,wy) is defined on X. The trajectory of
(25) subjected to this law will be denoted by x(t;xg), where

11



x(05x,) = x5 = [R(0), wy(0)]

A region P defined on X and containing the point (I,0) will be called a
region of asymptotic stability of (25) subjected to the given control law if
for every x, in P, x(t;x;) is in P for all t > 0 and x(t;x,) = (I,0) as

T —> o0,

Let the following two scalar functions be defined on X.

9 = ¢(R) = cos™* {%‘[tr(R) - l]}- (26a)
w = wlwg) = (wgwa)l/z (26b)

where @ 1is the angle of R defined by equation (19), and w 1is the norm of
Wy. The image of X under (26) will be denoted by Y. Clearly,
Y = [{p,w) such that O0<op<=xn , 0 < wl

The image under (26) of a trajectory x(t;xy) will be denoted by y(t;yo)
where

¥(05370) = vo = {9[R(0)], wlw,(0)]}

In general, through a given point in Y there will pass more than one trajec-
tory. Hence, in general, it is not possible to consider the trajectories
y(t;y,) to be solutions to a differential equation of the form § = F(y), and
to construct a region of asymptotic stability on Y from the properties of
F(y). However, in some cases it is possible to construct a region of asympto-
tic stability on Y directly from the properties of the trajectories y(t;yo).
This is done next.

Let Q(m,n) be a subset of Y defined by
Q(m,n) = [(@,w) such that 0<¢p<m<m , 0 <w <n]

and let the scalar function V{(9,w) (tentative Liapunov function) be defined
on @Q(m,n) as follows:

© w
Vo) = [ey(e)as + [ le/g(e)las (27)

where the scalar functions gl(s) and gg(s) are such that for m,n > 0 and
M,N < o,
0<g/(s) <M for O0<s<m, g(0) <M (28a)

0 < gg(s) <N for 0<s <n (28b)

12



Then V(0,0) = 0, and V(¢p,w) > O for other points in Q(m,n). Moreover, the
contours V(9,w) = vy and V(9,w) = vo have no points in common if vi # va.
Finally, V(p2,0) > V(p1,0) if, and only if, Qo > @1; similarly,

V(0,w=2) > V(0,wy) if, and only if ws > wi. Therefore, the sectors in q
defined by

u(v) = {kw;W) such $h§?o,V§?§?) <v <v¥* = min [V(m,0), V(O,n)]}» (29)

are nested by v, namely,
U(vz) = U(vi) if 0 <ve <vySv¥

(See sketch (b)).

Y

Vig,w) = v(O,n) = v*

¢ ——

Sketch (b)

Hence, if there exists a number b < v¥*¥ such that for any trajectory y(t;yb),

with y, in U(b), the time derivative of v, along that trajectory, is
negative semidefinite, namely,

v <0

and if v = O for at most a countable number of points along the trajectory,
then (see ref. 7) the region U(b) is a region of asymptotic stability on Y;
while, the region P(b) of points (R,ws) in X which maps under (26) into

U(b) is a region of asymptotic stability of (25) subJjected to the given control
law.

13



Suppose that the control law has the following form:
zg = -Jalg (@) (w)c + g (@,w)w,] (30)

where gl(w) and g (w) satisfy conditions (28), ¢ is the eigenvector of R,
and gs(@,w) satisfies the relation

t
g, (9,w) > wag(RAgg,vy) (31)
on a sector U(b) where b > 0; then

P(b) = [(R,wy) such that (o ,w) is in U(b)]
is a region of asymptotic stability of (25) subjected to the control law (30).

Indeed,

i = 5 Vomd + 2 V(o)

which on using (25b) and (27), the fact that o = wgc (see eq. (12) with
Wy = 0) and the control law (30), becomes

7 = g wie(Raggsvy) - woe(0,w)]

Hence, if condition (31) holds,
v <0

Moreover, from (30), (25b), and (6) (which imply g =0 if w = 0) it is clear
that g #0 for w=0and ¢ # O. Hence, v = O for, at most, a countable
nunber of points along the trajectory. Consequently, P(b) is a region of
asymptotic stability of (25) subjected to the control law (30) with condition

(31).

Two special cases of (25) will be used to illustrate the application of
the above-derived result. The first case is one in which g(RAdS,Wa) in
equation (25b) is defined by (6a) and corresponds to control by means of a set
of reaction Jets. The second case is one in which g(RAdS,wa) is defined by
(6b) and corresponds to control by means of a set of reaction wheels.

Case I: Let the nonlinear part g of the dynamic equation (25b) be
defined by (6a), and consider the special case of control law (30) with
g,(9) = k10,8,(w) = 1, g5(®,w) = ko, where k; and ko are constant positive
scalars. Then (30) becomes essentially a proportional plus rate control:

zg = -Jg(kiPc + kowy) (32)

1h



Clearly, conditions (28) are satisfied everywhere on Y. According to
equation (27),

1 1
V(p,w) = 3 k1% + 5 L

Moreover, as is shown in appendix C, where the scalar upi; is defined (C3),
-1 _
ng(RAdS:Wé) = WgJa S(Wé)Jéwa = “lwalwégwés <3 a/2 les

Therefore, condition (31) is satisfied on U(b) where b = (27/2)(ks/u1)>.
That is, the system is asymptotically stable on the following region of X.

2
1 -1 1 1|} 1.t 27 k¥
=k co =t - = + = < el -2
> 1-{ s [2 r(R) > > W Vg <:2 <Pl

It may be noted that when the vehicle has a spherical mass distribution,
which implies that p3 = O, the system is asymptotically stable everywhere on
X‘

Case II: Next suppose that control (32) is applied to a reaction wheel
control system. The nonlinear part of the dynamic equation is defined by (6b).
It is shown in appendix C, where the constant scalar up is defined (eq. C7),
that

wig(RAggsv,) = WEI528(s,)RAghs(0) < paw?[nb(0)n (0)]%/2
Hence, the system 1s asymptotically stable everywhere on X if
ko > uo ”hs(O)H

Thus, in both cases the simple "proportional plus rate" control law (32)
may be used for the synthesis of asymptotically stable attitude control
systems,

Usually, a control system must not only be stable, but also be reasonably
stiff to disturbances and must respond gquickly to commands; it must not require
excessive torques, velocities, power, etc. The freedom which remains in the
selection of the functions g; in (30) after conditions (28) and (31) are
satisfied may be used by a designer to consider such additional qualities of
the system.

A control law for the OAO.- Consider, for example, the OAO. It is
controlled by means of a set of reaction wheels, but unlike case II discussed
above, both the control torque z; and the wheel speeds must not exceed some
preassigned values, and a fast responding system is desired. A control law
which may be adequate in such a case is given below:

2y = _(1/2)<zrm/jm>ra[(l - k)sat(p,pg)e + (1 + k)wa/wm] (33)
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where ] is the maximum eigenvalue of the inertia matrix J, and

k = pad, (b (0w [z <1
-2
O = 2(1 - K)(1+%) " (Ipasans/ Zmax)
sat(P,0,) = 95,0  for 0S¢ <9

=1 for ¢ > 94

Control law (33) is a special case of the control law (30). Thus, (30)
becomes (33) if the following identifications are made:

g, = sat(0,05) » &, = 1/2(1 - K)ogay/nax » &, = 1/2 (1 + K)o/ (Gppsdinay)

Equations (33), (25b), and (6b) imply that w < O for all R and
W 2> Wypoye Therefore, the trajectory of the gystem cannot leave the region

T = [(Ryw,)  such that  (wiw)Y2 <w ]

Equation (33) implies that (zgza)l/g < zpo, on T.
Finally, according to the discussion of case IT, the system is asymptoti-
cally stable everywhere on X if

1/2(1 + %) 20/ (pascimas) > e |hg(0)]]

which is true in the present case. Therefore, the system has the following
properties:

i) It is asymptotically stable on T.
1i) The torque is bounded by =zp,, on T.

131) If Wpgy = Lhpoyx - |IBg(0)||1/3max  where hp,, is a spherical
bound on the momentum capacity of the reaction wheels, then the wheels
will not saturate on T.

iv) In the neighborhood of point (I,0) the system behaves as a three-
dimensional second-order linear system with damping of 0.5 and natural
frequency of 0.5(1+ k) 2y (IpascWpax)

v) The plots in figures 2, 3, and 4 depict some of the results
obtained from a digital computer simulation of an OAO-type vehicle. The
inertia matrix J, was assumed to be diagonal, Jy = (999,1110,1410)kg-m?;
the saturation limits for the momentum exchange and control torque were
assumed to be hg, = 4.68 N-m-sec and zpy, = 0.231 N-m, respectively.
(See ref. 2.)
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Figure 2.- The response of the system
in terms of the magnitudes of the
control torque, angular velocity,
and error angle.

Figure 3.- The response of the system
in terms of the components of the
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Figure 4.- The response of the system in terms of the components of the
relative momentum of the reaction wheels.
At t=0¢ =2rad, cf = -371/2(1,1,1), wE = 0.5(1,-1,-1) mrad/sec. The
wheels were assumed to be locked prior to t =0; Wnax = 2.6 mrad/sec.

The control may be divided roughly into three parts. For 0 <t < 100
sec, the control generates a pulse-like torque to bring the wvehicle to its
maximum velocity. For 100 < t < 750 sec the vehicle coasts with maximum veloc-
ity; the small torques probably counteract the gyroscopic effects. For
t > 750 sec, the control again generates pulse-like torgues to stop the vehicle
on target. After the transient, the initial momentum of the vehicle resides
in the sheels (fig. 4). One may suppose that although the duration of these
intervals may change with initial conditions, the general shape of the response

does not.
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CONCLUDING REMARKS

The representation of input and output of an attitude control system by
3X3 orthogonal matrices led to the definition of the system error as the
3X3 orthogonal matrix (the error matrix) corresponding to the rotation (the
error rotation) between the actual attitude of the controlled body and the
desired attitude. Euler's theorem on rotations was employed to express the
error matrix in terms of four parameters, namely, the angle (the error angle)
and the direction cosines of the real eigenvector of the error matrix. It was
discovered that the error angle and the magnitude of the angular velocity of
the controlled body are convenient variables in the construction of Ligpunov
functions for the process. A class of control laws was synthesized for which
the control torgue is a function of the real eigenvector of the error matrix
and the angular velocity of the controllied body. Conditions for which any
member of the class yields an asymptotically stable control system were stated.

The results presented are not applicable to on-off contrecl. If they are
to be applied to a reaction Jjet control system, throttling or pulse width
modulation schemes must be employed. The results are most applicable to
reaction wheel control systems. It appears that they may be made to spply to
other momentum exchsnge control schemes (i.e., control moment gyros).

The errors and delays in the attitude sensors, computer, and motors were
neglected in the analysis. To estimate the significance of such effects
physical sensgors and motors were placed on an air bearing platform, and the
loop was closed with a real time digital computer. The simulation of the OAO-
type vehicle was repeated and noc significant departures from theory (simple
computer simulation) were observed.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., July 1, 1966
125-19-03-~09
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APPENDIX A

NOTATION AND SPECTAIL FUNCTIONS

In this report vectors are denoted by lower-case letters with an overbar.
Linear transformations are denoted by upper-case letters with an overbar. The
term triplet (or basis) always means a right-hand triplet of orthonormal vec-
tors. Several triplets are employed; a letter 1s associated with each basis to
distinguish one from another. All triplets are erected at the fixed point of
the controlled body. A basis vector is denoted by the letter "u" with an over-
bar and two subscripts; the first subscript indicates the basis to which the
vector belongs, and the second subscript indicates the place the vector occupi
occupies in the triplet. For example, the symbol 7Ug, stands for the second

vector of the a +triplet (or a basis).

Column matrices representing a vector with respect to the various bases
are denoted by the lower-case letter used to denote the vector, but without
the overbar and with a subscript which indicstes the basis. For example, yg
stands for the column matrix representing the vector y with respect to the
a basis. All columns are 3 by 1.

A linear transformation which physically corresponds to a change of bases
igs referred to as a rotation,and a linear transformation which physically
corresponds to a linear operation on a vector is referred to as a linear
operator. A rotation is denoted by a capital letter with an overbar and two
subscripts. The first subscript indicates the image of the basis denoted by
the second subscript. For example, Aas is a rotation such that ﬁéi = Késasi’
i=1, 2, 3. The matrix representing a rotation such as Aas will be denoted
by Aaso

A linear operator is denoted without any subscripts but with an overbar.
For example, in the expression h = J W, J 1s the linear operator which takes
the vector W into the vector h. The matrix representing a linear operator
with respect to a bagis is denoted by the letter denoting the operator, but
unbarred and with a subscript which indicates the basis in which the repre-
sentation is being made. For example, Jg is the matrix representing the
operator J with respect to the a basis.

The transpose and inverse of a matrix A is denoted by At and ATL,
respectively. The identity matrix is denoted by 1I.

Let A = (a;;) be an arbitrary 3x3 matrix, and let y = (y;) be an
arbitrary 3X1 column matrix. Then, the functions of the matrix elements are:

The trace of A, 5

tr(A) =Zaii (A1)

i=1
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The column function of A,

8o3 ~8szz

a(a) = o3 (A2)

Mo+

o
w
W

810 "823

The matrix function of y

s(y) =|-v, O v, (A3)

Let a and b be two arbitrary vectors. The two binary operations & . b
and ¢ = g X b have the following meaning with respect to an arbitrary (but
orthonormal) basis, say the e basis:

5.5 = athe (AL)

T=8 XD a—m ce = -S(ag)be (AS)

The following identities are used in the report. (For arbitrary columns
matrices vy and z and matrix A)

S(y)z = -s(z)y (A6)
als(y)1 = v (AT)
tr[s(y)al = -2y%q(a) (A8)

Let B be an orthogonal matrix; then

tr(BABY) = tr(a) (A9)
a(BABY) = Bq(A) (A10)
s(By) = BS(y)B® (a11)
Let ¢ be a column such that cbte = 1; then
s%(e) = -I + cct (A12)
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AFPENDIX B
SOME PROPERTIES OF ROTATIONS
THE MATRIX FORM OF THE KINEMATIC EQUATION

Let the a basis be rotating with angular velocity w relative to the
s basis, and let the matrix Azg represent the rotation between the s basis
and the a basis. ILet P be an arbitrary point fixed in the a basgsis. The
position of P will be denoted by the vector T; its velocity relative to the
s basis will be denoted by the vector ¥. Then, ry; = Agorg, Vg = AggVgs
Iy = Vgy Ig = 0; and vy = -S(wg)ry. Consequently, the following chain of
equations is true.

_ s . €
O =Ty = AggTg + ApgTg = AgghgsTy + AggVs

_ 3 t T t
= AgghgsTa * Vg = (A Aas 'S(Wa)]ra

Since the chain must be true for every point fixed to the a basis, it
follows that the matrix form of the kinematic equation is

Aas = S(Wa)Aas (B1)
THE (¢,c) PARAMETERS

Consider any rotation matrix Agg. According to Euler's theorem on rota-
tions, Zés always has the eigenvalue +l. Hence, the transformation
x = A x may be thought of as a rigid rotation about the direction ¢
(ctc = 1) of the eigenvector of Ay corresponding to the eigenvalue +1,
through some angle ¢@. Therefore, the matrix Agg may be considered to be
the solution at T = ¢ of the following differential equation.

é% (Aas) = S(C)Aas
with initial condition, Ao = I at + = 0; that is,
A_. = explps(c)] = I + sin ¢S(c) + (1 - cos @)8%(c) (B2)

as

Property (Al2) was used in the representation of the exponential. Thus, equa-
tion (B2) defines the rotation matrix A,s 1in terms of the four parameters

(pjyc).

Conversely, the (®,c) parameters of a rotation matrix Ags may be
determined from the elements of the matrix Ay, as follows. (See eq. (A2)
for the definition of the function gq(A).)
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S
!

= cos™? {%-[tr(R) - 1]}-, 0<op<m (B3a)

Q
Il

cse @ q(A,g) 0<op<x (B3Db)

The singular cases must be considered separately. When ¢ = x the com-
ponents of ¢ are the solutions of the following set of equations.

/2
1 _ 1
les| = [5 (g + 1)] ’ Ci%j = 7 81y
while, for ¢ = 0, ¢ is arbitrary.
The four parameters (@,c) are constrained by cbe = 1.

THE q PARAMETER

When the rotation angle of Agg 1s known to be restricted to the interval,
0 < ®(1/2)n, then the matrix Agg may be defined by its skew-symmetric part
only, as follows. Let (see definition (A2))q = q(Ags). Then by equation (B3b)
q=singc, qtq = sin® @ (BY)

Fguations (B2) and (B4) -imply that for 0 <o < (1/2)x
-1
Agg = I+ 8(a) + [l + (1 - qtq)l/z] s%(q) (B5)

The components of g constitute a set of independent coordinates of Agg for
0 <o < (1/2)n. Note that q(A,g) 1is a continuous function of the elements
of the matrix A, for 0 <o < (1/2)m.

THE KINEMATIC EQUATION OF THE (¢,c) PARAMETERS

Let the matrix Agg be defined in terms of the (@,c) parameters as in

equation (B2). Since ¢ 1is an eigenvector of Aas’

and so,
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That is,
S(wy)e = (I - Aas)é = - gin ¢ S(e)e - (1 - cos 9)s2(c)e
But, according to (A12) 8%(c) = - I + cel, while c% = 0; hence,
S(wg)e = - sin @ S(c)é& + (1 - cos Q)¢
and

S(e)s(wgle = (1 - cos p)s(c)e + sin @ ¢

But, for any three colums x, v, and z, S(x)S(y)z = (x%2)y - (xVy)z. (This is
the matrix form of the vector triple product identity.) Hence,

Wwa = ®c + sin @c + (1 - cos @)s(c)e (B6)

while the kinematic equation is

¢ = WoC = C Wy (BTa)
. 1 1 ®
¢ =3 S(wgle + 5 cot<é>[wa - (wgc)c] (BTo)
THE KINEMATIC EQUATION OF THE q PARAMETER
If A,g 1is defined in terms of its skew-symmetric part as in equa-
tion (B3), then for 0 <o < x,
Wg = d + fl(Q;é) s d = Wg + f2(Q)Wa) (B8)

where,
£1(q,9) = [l - ¢+ (1 - qg)llz}—l(qté)q + [l + (1 - qg)l/z}-ls(q)é
and
fe(ava) = 5 80m)a - 3[1 - (1= Y2 -3 [1e (- 0¥ (e

It may be noted that both f; and fo are of order higher than one in HqH
for ||g|| = 0, so that the linear part of (B8) is

Vo = Q. Q= (BY)

24



APPENDIX C
DERIVATION OF THE DYNAMIC EQUATION

The equations relating the angular acceleration of the controlled rigid
body to the controlling torque will be derived in this appendix. Two cases
will be considered. 1In the first the controlling torque is external (i.e.,
control by means of a set of reaction Jjets). In the second the total angular
momentum of the system is conserved, and the controlling torque is generated
internally by a momentum exchange device (i.e., a set of reaction wheels).

CONTROL BY MEANS OF EXTERNAL TORQUE

Let the two vectors h and w be the angular momentum and angular velocity,
respectively, of the vehicle with respect to inertial space. Let J be the
moment of inertia operator of the vehicle. By definition,

h=Jw

The above equation has the following representation in the s basis (inertial)
space) and the a basis (the vehicle), respectively.

hg

[

JsWg

hy, = Jgvg
The matrix Jg representing the moment of inertia operator of the vehicle in

the body coordinates will be constant if, as will be assumed henceforth, the
mass distribution of the vehicle is fixed.

I the torque acting on the vehicle ig denoted by Z, it follows from
Newton's law that

hg = zg

But hg = Agshg; hence,

Vo = Agghg + Agghg

hy = Jg

The above equation together with the kinematic equation (C2) implies the
following dynamic equation (EBuler's equations of motion).

Vg = ngza + ngs(wa)JéWa (c1)
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The following inequality is useful for estimating the effectiveness of the
nonlinear part of (Cl)

(& wal] 5375 (2
zg = O
where
Ly, . =1, . . Ll .
py = Ji (d2 - Ja) + dz2 (Jz - Ju) + Jz (J1 - J2) (c3)

and j; are the eigenvalues of Jg.

The inequality (C2) follows from the Tact that (d/dt)|hwy = wowa/|lwlls

and that the maximum of |w§JélS(wa)Jawa| = U3 lwalwagwasl on the sphere
t _ o . —2/3 3
WolWg = ”Wa” is 3 Ha Hwa” .

CONTROL BY MEANS OF INTERNAL TORQUES

Consider three wheels oriented so that the spin axis of the 1ith wheel
is parallel to the ith vector of the a basis (the vehicle). Let the
moment of inertia of the ith wheel about its spin axis be denoted by jy.
Let the matrix JX represent the moment of inertia of the vehicle plus locked
wheels with respect to the body axes, and let Jg' be a diagonal matrix whose
elements are the moments of inertia jY of the wheels about their spin axes.
Then the total angular momentum h of the system may be represented in the
a Dbasgis as follows:

.V W W
ha = Jawa + Jawa

where the column matrix wy has the elements was which are the spin veloci-
ties of the wheels relative to the vehicle. But hg = Agghg. Hence,

Tawe, + Jaig = Agghq (chk)

Taking the time-derivative of equation (Ck),

Ve WeW °
JaWg + dgiy = Agghg + Ajghg

Let the motor torque acting on the ith wheel be denoted by -z ;. Then,

where the column matrix =z, has the elements =z45. Hence,

- 11 -1 -1 v
Wy = dp 25 t Jg S(wg)Agghy + J5 A shy

26



where, J,; 1is the inertia of the vehicle plus locked wheels minus the inertias
of the wheels about their spin axes; namely,
v W
Ja = Ja = Ja
If there is no external torque, the total angular momentum of the system is
conserved,in which case the dynamic equation is the following:

W,

s = Jg h. = constant (c5)

1 -1
25 + Jg S(wg)Agch s

s 7

The following inequality is useful for estimating the effectiveness of the
nonlinear part of (C5)

[ el ], s Il e (c6)

where

wy = |33 - a9zt + ozt - et + |ant - agt (c7)

and Jj; are the principal inertias of Jg.

The inequality (C6) follows from the Schwartz inequality and the fact that
o975 8() | < b2 [lwgll® and  [lagehgll = [ing
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APPENDIX D
FORM OF THE TIME OPTIMAL CONTROL LAW

Given the following system of differential equations,

R = 5(w,)R

-
Wa = CLZa

with the controlling variable =z, restricted to the closed sphere
The time optimal control maximizes the Hamiltonian (see ref. 8)

H= tr(Ptﬁ) + yzﬁé
where the matrix P satisfies the differential equation
P = S(wy )P
and the column matrix Vg satisfies the differential equation

Vg = ~ vWaH

(D1)
(D2)

HZaH < 2ax

(D3)

(D4)

(D5)

Equations (D1) and (D4) have the same transition matrix. Hence,

P = RRt(O)P(O)

Consequently,

PR = PY(0)R(0)R"S(w, )R = P*(0)R(0)S(R%W,)

Hence, on taking the trace of the above equation and using equation (A8), one

obtains the following result.
te
tr(P R) = - wgRk
t
where k = 2q[P (0)R(0)].
Therefore, the time optimal control has the following form

t 1/2
Zg = Zmaxya/ (yaya)

where the column y, 1is the solution of the following boundary value problem.
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[R(0O), wy(0)], and (I,0) define

S(w,)R

i/2

aZppseYal (Y55a)

. = - Rk

the boundary values.
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